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. 
Perfec t  Punctured Cyclic Codes 

I. Introduction. 

This paper presents a c l a s s  of codes which a r e  obtained from 

maximal length s h i f t  register codes by delet ing o r  puncturing c e r t a i n  

of  t h e i r  coordinates. The "punctured cyc l i c  codes" thus  obtained a r e  

shown t o  be optimum, and an  encoding and decoding procedure i s  

outlined. 

new bound on t h e  maximum distance obtainable with an n, k group code 

i s  derived. 

than, t h e  well-known Plotkin bound (Ref. 4 ) .  

I n  t h e  demonstration of t h e  opt imal i ty  of these  codes, a 

This bound i s  always as good as, and general ly  b e t t e r  

11. The Puncturing Procedure. 

To begin, it i s  necessary t o  prove several theorems. 

Theorem 1. 
The minimum value f o r  n f o r  which it i s  possible t o  ob ta in  an 

i s  g rea t e r  than o r  equal t o  (n,k) .&roup code with m i n i m u m  distance d 
0 

do + dl + 

where di = di - 1/2 i f  di - 

odd. 

i s  even and di = (di-l + 1)/2 i f  di - i s  

Proof. 

Designate the(n ,k)  group code by G. Since G contains an element 

with t h e  weight d it can be writ ten,  a f t e r  s u i t a b l e  row and column 
0' 



2. 

I-- 
o o . . . o  

o o . . . o  
G =  

G1 

permutations, i n  t h e  form 

o . . . o  

1 . . . 1  

H? 

Since 5 i s  a group and s ince  t h e  i d e n t i t y  occurs exact ly  twice (it 

c l e a r l y  cannot occur more than twice i f  G i s  t o  have minimum distance 

do) 5 must be an n - do, k - 1 group with some nonzero minimum 

distance dl. 

above, both glhleG and glhleG where glcG1, hleH, El 
of hl and glhl designates t h e  n-tuple obtained by following the  

( n  - do)-tuple gl by t h e  do-tuple hl. 

c1 t h e  weight of hl. 

Further, because o f t h e  second element of G, as wr i t t en  

i s  the  complement 

Let $be t h e  weight of gl and 

Then: 

w(g ) + w(h ) = dl + c l a d  
1 1 0, 

or 



Hence 

O do even 
d 

do + 1 
2 do odd 

Continuing t h e  same process t h e  following groups are successively 

G2, a n  (n  - do - dl, k - 2 )  code with minimum distance obtained. 

d2, @l/2); G3, a n  ( n  - do - dl - d2, k - 3) code with m i n i m u m  d is tance  

dg> d /2 ; and, i n  general, Gi, an ( n  - do - dl - 0 . .  - di-l, k - i) 

k?.f.i-l/2). L e t  i = k - 1 and observe code with minimum distance d 

t h a t  f o r  a n  ( m , l )  code t o  have minimum dis tance  d,rnhd. 

i 

(2 1 
Then 

Corollary 1. 
The smallest value of n f o r  which a n  (n,k) code with dis tance 

3 .  

can exist i s  

L, 

i 



4. 

Proof. - 

R .  
where 2 = 0 f o r  R .< 0. With  the same convention: 

J 

d2 ={${$I}= zk-’ - 1 2  ti-3 
i 

and, in general: 

f$- j-1 
d. = 2 

J 
i 

Thus, since 1 . L k  - 1, dk-l = 1, and 
1 

n A d  + d, + . . . + dk-l 
A 

k- 1 
k-1- j +I 

a .  
= 2k - 1 -T(2 = - 1). 

i 



. .  5. 

:Jete that i f  r(2k-1)2 d h  (r - 1)2k-1 f o r  some i n t e g e r  r, t h e  modified 

dyadic expansion 

4.-1 
d = 1-(2~-') -y 2 

can be obtained r e s u l t i n g  i n  t h e  inequa l i ty  

'i 

Theorem 2. 

If 

1 .ti&k, 

i 

the  bound obtained i n  Theoren 1 can be achieved. 

Proof. 

Assume d42'-'. 

- 
Consider the (2k - 1 ,k )  code with d is tance  2 k-1 . 

The columns of t h i s  code form a group on k generators from which t h e  

i d e n t i t y  has been deleted. Now consider a subgroup of 2 'i - 1 columns 

formed from 1. of  these  generators, again de l e t ing  t h e  i d e n t i t y .  

rows of t h i s  subgroup each contain exact ly  2 

The 1 ei-l 
ones. Puncturing the  



6 .  

columns of t h i s  subgroup from t h e  o r i g i n a l  group leaves a 
R,-1 3 'i - 1 - (2 - 1 ,k code with n6nimu-n distance d = 2k-1 - 2 

Proceeding i n  t h i s  fashion,dis t inct  subgroups o f  order R 

punctured f o r  each of t h e  values li so  long as t h e  generators of t he  

can be i 

subgroups are  a l l  d i s t i n c t .  This i s  possible so  lop< as 

The r e s u l t i n g  code then has 

symbols and minimum distance 

i 

and hence achieves t h e  bound o f  Theorem 1. 

If r2k-1>d>(r - 1)2k-1 the  bound can be achieved i f  C A i L r k  i n  

t h e  modified expansion described above. 

punc tu r iw  t h e  necessary number of columns from t h e  r ( 2 k  - l), k code 

obtained by repeat ing t h e  (2 k - 1,k) code r t ines .  

This i s  accomplished by 

Since each generator 
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occurs r tirnes, t h e  necessary number of subgroups can be punctured so  

long  as 

x A i L r k .  

i 

The following two sec t ions  ou t l ine  an  encoding and decoding procedure 

f o r  these  "perfect" punctured cycl ic  codes. 

111. Encoding. 

L e t  A be an (n,k) punctured cycl ic  code which i s  optimal, i .e. ,  

n = Zk - 1 - m where 

and 

It was shown i n  t h e  previous sec t ion  t h a t  such codes a r e  obtained 

by puncturing o r  de l e t ing  m (2k-l)"t r o o t s  of un i ty  i n  t h e  following 

fashion:  

k independent elements of GF(: ). Let GI ' 5 Choose ai, cy2, . . 



be t h e  addi t ive p u p  using al, cy2, . . , a 
as the  generators, G t h e  addi t ive p u p  using ah +1, . . , cyL +I 

and so on un t i l  a l l  the  addi t ive group aL +L +1, . 
necessary groups are formed. 

group t h i s  procedure y i e lds  the  necessarg m -  ~ ( 2 1 1 -  1) nonzero 

elements of GF(2 ). 

, as generators, G2 t h e  
% 

3 1 1 2  
' %1+1*+43' 1 2  

After omitt ing t h e  cero elements in each 

k This is t h e  punctured se t .  

Now consider the (2k - 1,k) cyc l ic  code. This, of course, i s  

generated by a primit ive kth degree polynomial in the  f i e l d  F of two 

elements. 

values corresponding t o  the punctured coordinates are simply omitted. 

To obtain the  (n,k) code f r o m  t h i s  basic  cyc l ic  code, t he  

Thus, each per fec t  punctured code uses  t h e  primary encoding procedure 

and s h i f t  r e g i s t e r  device of t h e  'fparent" cyc l ic  code ( 2  - 1,k) with 

l i t t l e  added complication. 

k 

Example 1. 

Consider t he  (12,4) code. Here m = 15 - 12 = 3. Choose crl cy2, 

and a1 + a2 as t he  punctured elements. The (15,4) can be generated by 

the  polynomial f ( x )  = x 4 + x + 1, a primitive 4th degree polynomial. 

The associated difference equation o r  recursion rule i s  then 01 + i+4 
5 6 + T= 0. Let cy1 = e , a2 = 8 where B is a primit ive 1 5 t h  root  of unity, 

and note t h a t  al + a2 = B 5 6 9  + 8 = B . The encoding f o r  the  (15,4) code 

i a  as in t h e  following example: 
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Deleting the  5th, 6th, and 9 t h  coordinates, t he  mapping becomes 

0 0 0 1- 0 0 0 1 0 1 0 0 1 1 1 1. 

This is t he  encoding procedure for the  (12,4) code with minimum 

distance 6 = 2 - 2l. 

I V .  Decoding. 

Let Ai be an (ni,k) optimal punctured cyc l ic  code of the  type 

given by the  algorithm for  "perfect" codes! 

and l e t  t he  number of correctable e r rors ,  as determined above, be ei. 

In o ther  words, the  puncturing consis ts  of de l e t ing  the  s e t  of nonzero 

elements of r d i s t i n c t  subgroups of GF(2 ). 

decoding procedure i s  straightforward and may be inher i ted  from any 

algebraic  decoding procedure used for t he  parent (Zk - 1,k)  cyc l ic  

code which enables one t o  determine t h e  minimum distance exp l i c i t l y ,  

regardless  of its value. 

k For such codes, t he  

Such a decoding procedure is the  Peterson decoding procedure for  

Bose-Chandhure codes (Ref. 3). 

the neareat  code word (in t h e  Hamming dis tance  sense) i f  it ex i s t s .  

This is a technique which determines 
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. 

' .  

To begin, perfect  punctured code8 are divided i n t o  c lasses  in 

accordance with the number of groups which were punctured. 

Class &: - 
% mi = 2 - 1, k. This is  t h e  simplest case; only one group 

with generators is punctured. For such a c lass ,  the  decoding 

proceeds in two s teps .  

SteE I: 

Since t h e  weight 

consider two separate  

of t he  punctured word 

ri-1 
of t h e  punctured mi-tuple i s  e i t h e r  0 or 2 

cases. In s tep  1 it is assumed t h a t  t h e  weight 

i s  zero, i .e. ,  all punctured posi t ions a re  zero. 

The received word of length ni i s  then expanded in to  a word of length 

(2k - 1) by placing 0's i n  each of t he  punctured posi t ions and the 

received symbols ai i n  t h e i r  respective unpunctured posi t ions.  

t he  word i s  decoded as though it were a ful l - length unpunctured word. 

If possible,  t he  nearest  word is determined, and the  dis tance dl 

between the  received word and the  unpunctured pos i t ion  of the  "decoded" 

word is recorded. 

Then 

Step 2: 
i1-1 

Assume t h a t  t h e  punctured posi t ion has weight 2 . In t h i s  

.gr. case, place the symbol i n  the  2 - 1 punctured posi t ions.  This 

immediately introduces an e r r o r  of order 2 
1,-1 - 1 i n  the  calculation. 

Again decode, i f  possible ,  the expanded word, and record the  dis tance 

d2 between t h e  unpunctured posit ions of t h e  decoded word and the  

received word. 
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Decision: 

Compare d, and d2 obtained i n  s t eps  1 and 2. Choose t h e  word 

with min (dl,d2) = 

correc tab le  e r ro r s  

t h a t  determined i n  

d. I f  d is not g rea t e r  than t h e  number of 

e 

s t e p  1 i f  d, < d, and i n  s t e p  2 i f  d, > d,. 

t h e  received word can be uniquely decoded and i s  i 

Note 

t h a t  dl and d2 cannot 

fewer e r r o r s  occur i n  

Class 11: -- 

I L  A L  

both be less than  o r  equal t o  ei, but i f  e o r  

transmission, one of them must be l e s s  than  e i' 

j2 - 1 + 2 - 1 41>a2, tl + i 2 5 k  
1 

The procedure i s  as i n  Class I, except. that t h e  decoding procedure 

is  divided i n t o  4 s teps .  

S t ep  2;: 

Assume a l l  punctured coordinates are zero. 

S t e p  2: 
el Assume t h e  2 - 1 punctured coordinates corresponding t o  t h e  

l 2  first punctured group a r e  zero and t h e  2 - 1 punctured coordinates 

corresponding t o  t h e  second a re  one. 

Step 2: 
Reverse t h e  r o l e s  of zero and one i n  s t e p  2. 

S t e p  4: 

Assume all punctured coordinates a r e  one. 
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A s  before, it i s  necessary t o  attempt t o  decode t h e  words formed 

i n  each s t e p  and t o  determine t h e  d is tance  di between t h e  decoded words 

and t h e  received word ( a t  t h e  unpunctured posit ions only). That word 

i s  chosen which results i n  t h e  minimum dis tance  di. 

fewer e r ro r s  were committed, t h e  decoding i s  unique. 

Again, i f  e o r  i 

r r - Class ;: 
'i I n  general f o r  m = 2 - 1, 1, L k ,  the re  will be 2r steps 

L L A  

i=l i=l 

t o  take.  However s ince  . t . > ~ ? ~ + ~ ,  and L e i g k ,  r remains r e l a t i v e l y  1 

small f o r  moderate values of k. I n  f a c t ,  it may be easily v e r i f i e d  

t h a t  r<-. Even f o r  l a r g e  values of k, t h i s  procedure may be completely 

p rac t i ca l ,  s ince  most usefu l  codes may be obtained by de le t ing  only one 

o r  two groups from t h e  2k - 1,k code. 

Generalization t o  q-ary codes: 

The developnent of t h i s  sect ion c lose ly  pwallels that of  Section I 

and w i l l  therefore  be somewhat condensed. 

Theorem 1'. 

The minimum value of n f o r  which it is  possible t o  obta in  an (n,k) 

group code over t h e  f i e l d  of q elements with m i n i m u m  dis tance do i s  

greater than  or equal t o  

do+dl+ . 



Proof: 

L e t  G represent t h e  n,k group codes under consideration. 

Since G has minimum distance do it can be wri t ten,  a f t e r  s u i t a b l e  

column permutation, i n  t h e  form 

G =  

o o . . . . . o  

5 
o o . . . . . o  

o o . . . . . o  

o o . . . . . o  

a2 5 
0 0 . 0 . .  . o  

. 
0 0 .  . . . o  

c r G  q-2 1 

0 o.....o 

ti 2 

cyi . . 
H2 

2 
uil 

U 

u2H2 



where 0,1,a,,cy2, . . . cy 
are groups of order k-1 ( the i d e n t i t y  i s  wr i t t en  exp l i c i t l y ) ,  H 

are the  elements of t h e  f i e l d ,  5 and G2 
(3-2 

i s  2 

t o  @i t h e  coset of Gz obtained by adding t h e  element ai ai . . . . 
1 2  

each of t h e  elements of G2 and wiH2 i s  t h e  coset  obtained by multiplying 

each of t h e  terms of H2 by cyi. Note t h a t  s ince  G has minimum weight do, 

there exists an  element 0 . . . . 0 3. cy. . . . cyi 

of t h e  last  do terms are zero. 

such that none 
=1 

Now, s e l e c t  an element gl from G(other than 0 0 . . . . 0 w. CY. . . . mi 
I1 =2 

o r  one of i ts  mult iples)  such that al of t h e  first n-d terms are non-zero 

and a of t h e  last do terms a r e  non-zero. Clearly, 2 

+a *d 5 2 0' 

I n  addition, it w i l l  now be shown t h a t  

L c& ar -q-1 

where c i s  t h e  maximum number of agreements between t h e  last do terms 

of gl and t h e  corresponding terms of any of t h e  vec tors  



Since a 

element of t h e  f i e l d  occurs exactly one i n  each pos i t ion  of t h e  

of t he  f inal  do terms of gl a r e  non-zero and s ince  each 2 

elements (12), t h e  t o t a l  number of agreements between these  a2 

no-zero terms and t h e  corresponding terms of all of t h e  q-1 elements 

a (12) is j u s t  a The average number of agreements is t h e n 2  and 2' 
a c l 2 .  

Thus, if a vector  co r re spnd ing  t o  one of t h e  elements (12) f o r  

which c G 2  i s  se l ec t ed  and subtracted from gl, t h e r e  Will s t i l l  be 
q-1 

al non-zero terms i n  this first *do terms of t h e  r e s u l t i n g  vector 

and t h e  last do terms will contain exact ly  do-c non-zero terms. Thus 

al+do-c* do 

as was s t a t e d  above. 

t h e  r e s u l t  

Combining the  inequa l i t i e s  (10) and (11) yie lds  

The group 5, then, i s  an  (n-do,k-1) code over a f i e l d  of q elements 

w i t h  t he  property t h a t  dl - - al*{%} . By repeat ing t h i s  argument, as 
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, -  

before, t h e  statement of t h e  theorem follows. 

Corollary 1' : 

The smallest value of n f o r  which an (n,k) code over t h e  f i e l d  of 

q elements with d is tance  

k-1 Li'l 
d = B, q - CBi9 pi = 0,1,2, 0 , 9-1) 

can exist i s  

Proof: 

T h i s  proof i s  completely analogous t o  t h a t  f o r  q = 2 and hence 

will be omitted. 

To obtain an analog t o  Theorem 2, consider t h e  (qk - 1,k)  maximal 

length s h i f t  r e g i s t e r  code over the  q-ary alphabet with minimum dis tance  

d = (q - 1) q 

generators over t h e  f i n i t e  f i e l d  GF(q) from which t h e  i d e n t i t y  has been 

deleted.  

t hese  generators,  again de le t ing  t h e  i den t i ty .  

subalgebra each contain exact ly  q 

of t h i s  subalgebra from t h e  o r ig ina l  algebra leaves a (q - 1 - (qa  - l),k) 
code with m i n i m u m  dis tance d = (q  

k-1 . The columns of t h i s  code form an  algebra on k 

a Now consider a subalgebra of q columns formed from I of 

The rows of t h i s  

Irl - 1 zeroes. Puncturing t h e  columns 

k 

k-1 l,-1 - q ) (q - 1). 



I n  addi t ion,  one may div ide  t h e  a lgebra i n t o  (q - 1) c las ses  w i t h  

t h e  condi t ion that i f  a i s  i n  one class, no scalar mult ip le  of a i s  i n  

t h e  same c lass .  The weight of aw row i n  a subclass is l/(q - 1) 

times t h e  weight of a f u l l  row of the  code. Similar ly ,  t h e  same 

statement i s  appl icable  t o  any subalgebra of any dimension. Thus 

another puncturing presents i t s e l f  as a poss ib i l i t y .  

number l e s s  than  q - 1, t h e  number of subclasses of t h e  k-dimensional 

Let 8, be a 

algebra.  Puncturing the  columns of these  Bt subclasses leaves a 
n 

[(q - 1 - Bk)(q k - l /q  - l ) ,k) \  code with minimum dis tance  d = (q - 1 - 
J k-1 L 

ek)(q ). Similarly consider B of t h e  an Li-dimensional 

- l /q  - 1) 'i 'i subalgebra. Then an analogous puncturing 
L 

A k-1 'i-1 fl ,k  code with minimum dis tance  d = q (q - 1) - f3' q /q - 1. 
'i 1 

s u f f i c i e n t  (though not necessary) condition for a t t a i n i n g  t h e  bound of 

Theorem 1' may now be formulated: 

Theorem 2: 
.Ci-1 

Let d = f3,qk-l - cBiq pi = 0, 1, 2, . . (q - 1) 
L L  then  i f  e$ma.x Bi and k 1--tj-k - 1, ai # Lj (i # j )  

a. 
t h e  bound, n = Bo - xp. i s  achieved by puncturing q - 1  1 9 - 1 '  

columns as described above. I n  this case t h e r e  a r e  obviously enough 

generators,  algebras and subalgebras t o  puncture. 


